Problem 1.51

[Computer] Repeat all of Problem 1.50 but using the initial value $\phi_{\mathrm{o}}=\pi / 2$.

Solution

Equation (1.51) is on page 31.

$$
\begin{equation*}
\ddot{\phi}=-\frac{g}{R} \sin \phi \tag{1.51}
\end{equation*}
$$

With $R=5 \mathrm{~m}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and $\phi_{\mathrm{o}}=\pi / 2$, the initial value problem to solve is

$$
\begin{array}{ll}
\ddot{\phi}=-\frac{9.8}{5} \sin \phi, & \phi(0)=\frac{\pi}{2}, \phi^{\prime}(0)=0 \\
\ddot{\phi}=-1.96 \sin \phi, & \phi(0)=\frac{\pi}{2}, \phi^{\prime}(0)=0 .
\end{array}
$$

Note that $\phi(0)=\pi / 2$ is the angle at $t=0$, and $\phi^{\prime}(0)=0$ indicates that the particle starts from rest. To numerically solve this, type

$$
\mathrm{s}=\text { NDSolve }\left[\left\{\phi^{\prime \prime}[\mathrm{t}]==-1.96 \sin [\phi[\mathrm{t}]], \phi[0]==\frac{\pi}{2}, \phi^{\prime}[0]==0\right\}, \phi,\{\mathrm{t}, 0,21\}\right]
$$

into Mathematica and press Shift+Enter. The output below is given as a result.

$$
\{\{\phi \rightarrow \text { InterpolatingFunction[] }\}\}
$$

In order to plot this function, type
Plot $[$ Evaluate $[\phi[\mathrm{t}] / . \mathrm{s}],\{\mathrm{t}, 0,21\}$, PlotRange \rightarrow All, AxesLabel $\rightarrow\{\mathrm{t}, \phi\}$, PlotStyle \rightarrow Blue $]$ into Mathematica and press Shift+Enter to obtain the following graph.

By making the small-angle approximation, equation (1.51) becomes

$$
\ddot{\phi} \approx-\frac{g}{R} \phi,
$$

which has the exact solution,

$$
\phi(t)=A \cos \left(\sqrt{\frac{g}{R}} t\right)+B \sin \left(\sqrt{\frac{g}{R}} t\right) .
$$

Apply the initial conditions to determine the constants, A and B.

$$
\begin{aligned}
\phi(0) & =A=\frac{\pi}{2} \\
\phi^{\prime}(0) & =B \sqrt{\frac{g}{R}}=0
\end{aligned}
$$

Solving this system of equations yields $A=\pi / 2$ and $B=0$, which means

$$
\phi(t)=\frac{\pi}{2} \cos \left(\sqrt{\frac{g}{R}} t\right) .
$$

Therefore, with $R=5 \mathrm{~m}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$,

$$
\phi(t)=\frac{\pi}{2} \cos (1.4 t) .
$$

In order to plot this function, type

$$
\text { Plot }\left[\frac{\pi}{2} \cos [1.4 \mathrm{t}],\{\mathrm{t}, 0,21\}, \text { PlotRange } \rightarrow \text { All, AxesLabel } \rightarrow\{\mathrm{t}, \phi\}, \text { PlotStyle } \rightarrow \text { Red }\right]
$$

into Mathematica and press Shift+Enter.

To superimpose this graph with the previous one, type

$$
\text { Show }[\%, \% \%]
$$

into Mathematica and press Shift+Enter.

Because the graphs do not overlap, the small-angle approximation is not a good one.

